Bioinformatics-driven, rational engineering of protein thermostability.
نویسندگان
چکیده
A longstanding goal in protein engineering is to identify specific sequence changes that endow proteins with desired functional properties. As opposed to traditional rational and random protein engineering techniques, we have employed a bioinformatic approach to identify specific sequence changes that influence key functional properties of a protein within a defined superfamily. Specifically, we have used the Bayesian sequence-based algorithms PROBE and Classifier to identify a strand-turn-strand motif that contributes to thermophilicity among members of the serine protease subtilase superfamily. By replacing a 16 amino acid sequence in the mesophilic subtilisin E (from Bacillus subtilis) with a bioinformatics-generated thermophilic model sequence, the melting temperature of subtilisin E was increased by 13 degrees C. While wild-type subtilisin E was inactive at 90 degrees C, the mutant retained a substantial fraction of its function, with ca. one-third of the activity that it has at 45 degrees C.
منابع مشابه
Bioinformatics Analysis of Upstream Region and Protein Structure of Fungal Phytase Gene
Phytase increases the bioavailability of phytate phosphorus in seed-based animal feeds and reduces the phosphorus pollution of animal waste. Since most animal feeds for pellets are heated up to 65-80 °C, the production of a thermostable structure for phytase can be useful. In this study, we sought to perform bioinformatics analysis of the upstream region and protein structure of fungal phytase ...
متن کاملQuality Matters: Extension of Clusters of Residues with Good Hydrophobic Contacts Stabilize (Hyper)Thermophilic Proteins
Identifying determinant(s) of protein thermostability is key for rational and data-driven protein engineering. By analyzing more than 130 pairs of mesophilic/(hyper)thermophilic proteins, we identified the quality (residue-wise energy) of hydrophobic interactions as a key factor for protein thermostability. This distinguishes our study from previous ones that investigated predominantly structur...
متن کاملStructural and dynamic evolution of the amphipathic N-terminus diversifies enzyme thermostability in the glycoside hydrolase family 12.
Understanding the molecular mechanism underlying protein thermostability is central to the process of efficiently engineering thermostable cellulases, which can provide potential advantages in accelerating the conversion of biomass into clean biofuels. Here, we explored the general factors that diversify enzyme thermostability in the glycoside hydrolase family 12 (GH12) using comparative molecu...
متن کاملVisualCNA: a GUI for interactive constraint network analysis and protein engineering for improving thermostability
UNLABELLED Constraint network analysis (CNA) is a graph theory-based rigidity analysis approach for linking a biomolecule's structure, flexibility, (thermo)stability and function. Results from CNA are highly information-rich and require intuitive, synchronized and interactive visualization for a comprehensive analysis. We developed VisualCNA, an easy-to-use PyMOL plug-in that allows setup of CN...
متن کاملRational Design of Disulfide Bonds Increases Thermostability of a Mesophilic 1,3-1,4-β-Glucanase from Bacillus terquilensis
1,3-1,4-β-glucanase is an important biocatalyst in brewing industry and animal feed industry, while its low thermostability often reduces its application performance. In this study, the thermostability of a mesophilic β-glucanase from Bacillus terquilensis was enhanced by rational design and engineering of disulfide bonds in the protein structure. Protein spatial configuration was analyzed to p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Protein engineering, design & selection : PEDS
دوره 19 11 شماره
صفحات -
تاریخ انتشار 2006